Multi-valued contraction mappings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endpoints of multi-valued cyclic contraction mappings

Endpoint results are presented for multi-valued cyclic contraction mappings on complete metric spaces (X, d). Our results extend previous results given by Nadler (1969), Daffer-Kaneko (1995), Harandi (2010), Moradi and Kojasteh (2012) and Karapinar (2011).

متن کامل

On Multi-valued Weak Contraction Mappings

Received: December 21, 2010 Accepted: January 7, 2011 doi:10.5539/jmr.v3n2p151 Abstract In this paper, we study fixed point theorems for multi-valued weak contractions. We show that the Picard projection iteration converges to a fixed point, give a rate of convergence and generalize Collage theorem. This work includes results on multi-valued contraction mappings studied by (Kunze, H.E., La Torr...

متن کامل

Nonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings

In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (u...

متن کامل

Common fixed point theorem for cyclic generalized multi-valued contraction mappings

In this paper, we extend a multi-valued contraction mapping to a cyclic multi-valued contraction mapping. We also establish the existence of common fixed point theorem for a cyclic multi-valued contraction mapping. Our results extend, generalize and unify Nadler’s multi-valued contraction mapping and many fixed point theorems for multivalued mappings. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

Approximation of endpoints for multi-valued mappings in metric spaces

In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1969

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1969.30.475